Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Disodium tricopper(II) tetrakis[selenate(IV)] tetrahydrate

Wei Liu, ${ }^{\text {a* }}$ Lan Zhang, ${ }^{\text {a }}$ Kai Hu, ${ }^{\text {b }}$ Lixin Cao, ${ }^{\text {a }}$ Ge Su ${ }^{\text {a }}$ and Jingtai Zhao ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ Institute of Materials Science and Engineering, The Ocean University of China, Qingdao 266100, People's Republic of China, ${ }^{\text {b }}$ Department of Computer Science, Dezhou University, Shandong 253023, People's Republic of China, and 'State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, People's Republic of China
Correspondence e-mail: weiliu@ouc.edu.cn

Received 9 September 2008; accepted 21 October 2008
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{Cu}-\mathrm{O})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.068$; data-to-parameter ratio $=18.6$.

The title compound, $\mathrm{Na}_{2} \mathrm{Cu}_{3}\left(\mathrm{SeO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, has been prepared under hydrothermal conditions. The crystal structure contains a three-dimensional anionic framework made up from distorted $\left[\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ octahedra ($\overline{1}$ symmetry), $\left[\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ square pyramids and trigonal-pyramidal SeO_{3} units sharing common corners. The connectivity among these units leads to four- and eight-membered polyhedral rings, which by edge-sharing interconnect into walls. A rhombus-like 16-membered polyhedral ring channel system with a longest length of approximately $14.0 \AA$ and a shortest length of $5.3 \AA$ is enclosed by such walls along the a axis. The water molecules attached to the Cu atoms, as well as the electron lone pairs of the $\mathrm{Se}^{\mathrm{IV}}$ atoms, protrude into these channels. The sevencoordinated Na^{+}counter-cations occupy the remaining free space of the 16 -membered polyhedral ring channels. An intricate network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds further consolidates the three-dimensional structure.

Related literature

For the structures of other hydrous copper(II) selenates(IV) or selenates(VI), see: Asai \& Kiriyama (1973), Giester (1991); Iskhakova \& Kozlova (1995).

Experimental

Crystal data

$\mathrm{Na}_{2} \mathrm{Cu}_{3}\left(\mathrm{SeO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$
$M_{r}=816.50$
Monoclinic, $P 2_{1} / c$
$a=5.2218$ (5) A
$b=8.9863$ (6) \AA
$c=15.7960$ (11) \AA
$\beta=92.071$ (4) ${ }^{\circ}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.204, T_{\text {max }}=0.250$

6010 measured reflections 2142 independent reflections 2065 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.068$ independent and constrained
$S=1.12$ refinement
2142 reflections
115 parameters

$$
\begin{aligned}
& \Delta \rho_{\max }=0.77 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-1.02 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Se} 1-\mathrm{O} 7$	$1.698(3)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$1.990(3)$
$\mathrm{Se} 1-\mathrm{O} 2$	$1.705(3)$	$\mathrm{Cu} 1-\mathrm{O} 8^{\mathrm{i}}$	$2.475(3)$
$\mathrm{Se} 1-\mathrm{O} 4$	$1.709(3)$	$\mathrm{Cu} 2-\mathrm{O} 1^{\mathrm{ii}}$	$1.947(3)$
$\mathrm{Se} 2-\mathrm{O} 8$	$1.673(3)$	$\mathrm{Cu} 2-\mathrm{O} 3$	$1.962(3)$
$\mathrm{Se} 2-\mathrm{O} 1$	$1.708(3)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$1.968(3)$
$\mathrm{Se} 2-\mathrm{O} 3$	$1.717(3)$	$\mathrm{Cu} 2-\mathrm{O} 7^{\mathrm{iii}}$	$1.980(3)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.968(3)$	$\mathrm{Cu} 2-\mathrm{O} 5$	$2.268(3)$

Symmetry codes: (i) $-x-1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $x-1, y, z$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {iv }}$	0.80 (8)	2.00 (8)	2.786 (4)	168 (7)
$\mathrm{O} 5-\mathrm{H} 2 \cdots \mathrm{O} 3^{v}$	0.87 (8)	1.88 (8)	2.746 (4)	174 (7)
$\mathrm{O} 6-\mathrm{H} 3 \cdots \mathrm{O} 8^{\text {vi }}$	0.87 (8)	1.91 (8)	2.758 (5)	163 (7)
$\mathrm{O} 6-\mathrm{H} 4 \cdots \mathrm{O}{ }^{\text {i }}$	0.89 (8)	1.76 (8)	2.641 (4)	169 (8)
$\begin{align*} & \text { Symmetry } \quad \text { cod } \tag{v}\\ & -x-1, y+\frac{1}{2},-z \end{align*}$	(i) $-x-1, y-\frac{1}{2},-z+\frac{1}{2}$; (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.		(iv) $-x,-y+1,-z$;	

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the opening project of the State Key Laboratory of High Performance Ceramics and Superfine Microstructure (grant No. SKL200706SIC).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2197).

References

Asai, T. \& Kiriyama, R. (1973). Bull. Chem. Soc. Jpn, 46, 2395-2401.
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Crystal Impact (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Giester, G. (1991). Monatsh. Chem. 122, 229-234.
Iskhakova, L. D. \& Kozlova, N. P. (1995). Kristallografiya, 40, 635-638. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

supplementary materials

Disodium tricopper(II) tetrakis[selenate(IV)] tetrahydrate

W. Liu, L. Zhang, K. Hu, L. Cao, G. Su and J. Zhao

Comment

Studies of hydrous copper selenites and selenates with three-dimensional frameworks have been reported previously, e.g. by Asai \& Kiriyama (1973), Giester (1991) and Iskhakova \& Kozlova (1995). Among the corresponding structures various polyhedral ring channel systems are established. The current article presents the result of the single-crystal X-ray analysis of a new sodium copper selenite, $\mathrm{Na}_{2} \mathrm{Cu}_{3}\left(\mathrm{SeO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, (I), with a 16-membered polydedral ring channel system.

In the asymmetric unit of (I) there are two crystallographically distinct copper atoms. The six-coordinated Cu 1 site is a typical Jahn-Teller ion with a distorted, tetragonally elongated octahedral $\left[\mathrm{Cu} 1 \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ coordination, whereas Cu 2 is surrounded by five O -atoms, leading to a distorted square-pyramidal $\left[\mathrm{Cu} 2 \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ environment. The two independent selenium atoms are coordinated by three oxygen atoms, forming the characteristic trigonal-pyramidal $\mathrm{SeO}_{3}{ }^{2-}$ anion (Fig. 1).

The square-pyramidal $\left[\mathrm{Cu} 2 \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units share its basal O atoms with four neighboring SeO_{3} units leading to chains of corner-shared four-membered polyhedral rings running along [100]. The [$\mathrm{Cu}_{1} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] units are located between such parallel chains and bridge them via $\mathrm{Cu}-\mathrm{O}-\mathrm{Se}$ bonds into an open framework. The water molecules attached to Cu 1 and Cu 2 as well as the electron lone-pairs of the selenium(IV) atoms protrude into the free space of this network (Fig. 2).

The basic features of the structure could also be described as the assemblage of linear chains of Cu and Se centres leading to 4 -membered and 8 -membered rings that interconnect by edge-sharing into two similar wavy layer packings extending along [011] and [01 $]$, respectively. Such layers intersect at the $\mathrm{Cu}(1)$ sites, eventually forming a rhombus-like 16-membered ring channel system extending along the a axis with the biggest length of approximately $14.0 \AA$ and the smallest length of $5.3 \AA$ (Fig.3).

The Na^{+}counter cations are coordinated by seven oxygen atoms and occupy the central space of the $16-\mathrm{membered}$ ring polyhedral channels to keep the structural stability and satisfy the charge balance. An intricate network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds further consolidates the three-dimensional structure (Table 2).

Experimental

The title compound was synthesized under hydrothermal conditions. A mixture of $\mathrm{Na}_{2} \mathrm{SeO}_{3}$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in a molar ratio of $1: 1$ was placed in a Teflon-lined stainless steel autoclave and heated to 443 K for 5 d , cooled at $2 \mathrm{~K} / \mathrm{h}$ to 373 K , and finally cooled to room temperature. Light blue crystals with a rod-like habit were obtained. Cu, Se and Na contents were analyzed using ICP-AES (Varian Vista, radial observation): Obs./calc. mass\%: Cu, 23.33/23.91; Se, 38.70/39.23; Na, 5.63/5.42.

supplementary materials

Refinement

Charge balance considerations and bond valence sum (BVS) calculations indicate that atoms O5 and O6 belong to water molecules. For the metal atoms, the oxidation states of +2 for Cu ions (BVS Cu1: +2.05 and $\mathrm{Cu} 2:+2.01$), +4 for the Se ions (BVS Se1: +4.01 and $\mathrm{Se} 2:+4.06$) and +1 for the Na ions (BVS Na1: +1.02) were confirmed. The hydrogen atoms of the water molecules were located from difference Fourier maps and were refined with distance restraints of $\mathrm{d}(\mathrm{O}-\mathrm{H})=$ $0.80(8)-0.89(8) \AA$ and a common $U_{\text {iso }}$ parameter of $0.05 \AA^{2}$.

Figures

Fig. 1. The coordination environment of copper and selenium atoms with anisotropic thermal ellipsoids drawn at the 60% probability level. H atoms are draw as small spheres of arbitrary radius. [Symmetry codes: (i) $-x,-y,-z$; (ii) $-x-1, y-1 / 2,-z+1 / 2$; (iii) $x+1, y, z$; (iv) $x-1, y$, z).]

Fig. 2. The 16-membered polyhedral ring channels of (I), filled with Na^{+}counter cations.

disodium tricopper(II) tetrakis[selenate(IV)] tetrahydrate

Crystal data

$\mathrm{Na}_{2} \mathrm{Cu}_{3}\left(\mathrm{SeO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$	$F_{000}=762$
$M_{r}=816.50$	$D_{\mathrm{x}}=3.661 \mathrm{Mg} \mathrm{m}^{-3}$
	Mo $\mathrm{K} \alpha$ radiation
Monoclinic, $P 2_{1} / c$	$\lambda=0.71073 \AA$
Hall symbol: -P 2 ybc	Cell parameters from 986 reflections
$a=5.2218(5) \AA$	$\theta=2.6-22.8^{\circ}$
$b=8.9863(6) \AA$	$\mu=14.24 \mathrm{~mm}^{-1}$
$c=15.7960(11) \AA$	$T=296(2) \mathrm{K}$
$\beta=92.071(4)^{\mathrm{o}}$	Rod, light blue
$V=740.74(10) \AA^{3}$	$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$
$Z=2$	

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.204, T_{\max }=0.250$
6010 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.068$
$S=1.12$
2142 reflections
115 parameters
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& 2142 \text { independent reflections } \\
& 2065 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=30.0^{\circ} \\
& \theta_{\min }=2.6^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-12 \rightarrow 12 \\
& l=-21 \rightarrow 22
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0202 P)^{2}+3.7977 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.77 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.02 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on $F^{\wedge} 2^{\wedge}$, conventional R-factors R are based on F, with F set to zero for negative $F^{\wedge} 2^{\wedge}$. The threshold expression of $F^{\wedge} 2^{\wedge}>\sigma\left(F^{\wedge} 2^{\wedge}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Se 1	$0.20254(7)$	$0.28287(4)$	$0.09687(2)$	$0.01090(10)$
Se 2	$-0.79415(7)$	$0.53958(5)$	$0.27304(2)$	$0.01476(11)$
Cu 1	0.0000	0.0000	0.0000	$0.01381(14)$
Cu 2	$-0.29891(8)$	$0.42910(6)$	$0.17116(3)$	$0.01266(11)$
O 1	$-1.0733(5)$	$0.4403(4)$	$0.27181(18)$	$0.0207(6)$

O2	$-0.0088(5)$	$0.4276(3)$	$0.09497(18)$	$0.0153(5)$
O3	$-0.5831(5)$	$0.4016(3)$	$0.24757(18)$	$0.0165(5)$
O4	$0.1289(6)$	$0.2058(3)$	$0.00011(18)$	$0.0166(5)$
O5	$-0.3653(7)$	$0.6725(4)$	$0.1392(2)$	$0.0209(6)$
O6	$0.2781(6)$	$-0.0756(4)$	$0.07804(19)$	$0.0199(6)$
O7	$0.4702(5)$	$0.3793(3)$	$0.07309(17)$	$0.0149(5)$
O8	$-0.7371(6)$	$0.5600(4)$	$0.3773(2)$	$0.0272(7)$
Na1	$0.7415(3)$	$0.3619(2)$	$-0.04070(11)$	$0.0226(4)$
H1	$-0.277(15)$	$0.707(9)$	$0.104(5)$	0.050^{*}
H2	$-0.372(14)$	$0.748(9)$	$0.174(5)$	0.050^{*}
H4	$0.226(15)$	$-0.063(9)$	$0.131(5)$	0.050^{*}
H3	$0.437(15)$	$-0.049(9)$	$0.088(5)$	0.050^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	$0.01040(17)$	$0.01286(18)$	$0.00949(17)$	$-0.00189(12)$	$0.00133(12)$	$-0.00064(12)$
Se2	$0.01172(18)$	$0.0176(2)$	$0.01500(18)$	$0.00083(13)$	$0.00180(13)$	$-0.00071(14)$
$\mathrm{Cu1}$	$0.0139(3)$	$0.0124(3)$	$0.0149(3)$	$-0.0023(2)$	$-0.0030(2)$	$-0.0004(2)$
Cu2	$0.0085(2)$	$0.0195(2)$	$0.0101(2)$	$0.00022(17)$	$0.00143(15)$	$-0.00087(17)$
O1	$0.0097(12)$	$0.0415(19)$	$0.0110(12)$	$-0.0042(12)$	$0.0007(10)$	$-0.0034(12)$
O2	$0.0107(12)$	$0.0208(14)$	$0.0146(12)$	$0.0036(10)$	$0.0042(10)$	$0.0019(11)$
O3	$0.0137(12)$	$0.0207(14)$	$0.0152(12)$	$0.0002(11)$	$0.0044(10)$	$0.0009(11)$
O4	$0.0211(14)$	$0.0166(13)$	$0.0121(12)$	$-0.0080(11)$	$0.0015(10)$	$-0.0022(10)$
O5	$0.0298(16)$	$0.0117(14)$	$0.0215(15)$	$-0.0011(12)$	$0.0048(13)$	$-0.0013(11)$
O6	$0.0177(14)$	$0.0280(17)$	$0.0138(13)$	$0.0011(12)$	$-0.0030(11)$	$-0.0043(12)$
O7	$0.0099(11)$	$0.0215(14)$	$0.0135(12)$	$-0.0054(10)$	$0.0010(9)$	$-0.0021(11)$
O8	$0.0190(14)$	$0.045(2)$	$0.0176(14)$	$-0.0028(14)$	$0.0012(12)$	$-0.0149(14)$
Na1	$0.0193(8)$	$0.0307(10)$	$0.0177(8)$	$0.0015(7)$	$0.0015(6)$	$0.0005(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

Se1-07	1.698 (3)	$\mathrm{Cu} 2-\mathrm{O} 1^{\text {iii }}$	1.947 (3)
Se1-O2	1.705 (3)	$\mathrm{Cu} 2-\mathrm{O} 3$	1.962 (3)
Se1-O4	1.709 (3)	$\mathrm{Cu} 2-\mathrm{O} 2$	1.968 (3)
Se2-O8	1.673 (3)	$\mathrm{Cu} 2-\mathrm{O} 7^{\text {iv }}$	1.980 (3)
Se2-O1	1.708 (3)	Cu2-O5	2.268 (3)
Se2-O3	1.717 (3)	$\mathrm{Na} 1-\mathrm{O} 7$	2.333 (4)
Cu1-O4	1.968 (3)	$\mathrm{Na}-\mathrm{O}^{\text {v }}$	2.482 (4)
$\mathrm{Cu} 1-\mathrm{O} 4^{\text {i }}$	1.968 (3)	$\mathrm{Na}-\mathrm{O} 2^{\text {vi }}$	2.519 (4)
Cu1-O6	1.990 (3)	Na - $\mathrm{O}^{\text {iii }}$	2.526 (4)
$\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	1.990 (3)	$\mathrm{Na}-\mathrm{O} 2{ }^{\text {iii }}$	2.537 (3)
$\mathrm{Cu}-\mathrm{O} 8^{\text {ii }}$	2.475 (3)	$\mathrm{Na}-\mathrm{O}^{\text {vi }}$	2.618 (4)
$\mathrm{Cu}-\mathrm{O} 8^{\text {ii }}$	2.475 (3)	Na1-O6 ${ }^{\text {vii }}$	2.641 (4)
O7-Se1-O2	98.30 (14)	$\mathrm{Cu} 2-\mathrm{O} 5-\mathrm{H} 2$	129 (5)
O7-Se1-O4	99.75 (13)	$\mathrm{Na} 1^{\mathrm{v}}$ - $\mathrm{O} 5-\mathrm{H} 2$	116 (5)
O2-Se1-O4	99.71 (14)	H1-O5-H2	100 (7)

sup-4

O8-Se2-O1	100.95 (16)	Cu1-O6-Na1 ${ }^{\text {vii }}$	99.94 (13)
O8-Se2-O3	102.54 (16)	$\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{H} 4$	107 (5)
O1—Se2-O3	100.08 (15)	$\mathrm{Na} 1{ }^{\text {vii }}-\mathrm{O} 6-\mathrm{H} 4$	109 (5)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	180.00 (6)	$\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{H} 3$	133 (5)
O4- $\mathrm{Cu} 1-\mathrm{O} 6$	94.50 (13)	$\mathrm{Na} 1{ }^{\text {vii }}-\mathrm{O} 6-\mathrm{H} 3$	110 (5)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 6$	85.50 (13)	H4-O6-H3	97 (7)
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	85.50 (13)	Se1-O7-Cu2 ${ }^{\text {iii }}$	115.16 (15)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 6^{\text {i }}$	94.50 (13)	$\mathrm{Se} 1-\mathrm{O} 7-\mathrm{Na} 1$	131.60 (16)
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 6^{\text {i }}$	180.00 (14)	$\mathrm{Cu} 2{ }^{\text {iii }}-\mathrm{O} 7-\mathrm{Na} 1$	104.37 (12)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 3$	87.30 (12)	Se1-O7-Na1 ${ }^{\text {vi }}$	98.71 (13)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 2$	92.48 (12)	$\mathrm{Cu} 2{ }^{\text {iii }}-\mathrm{O} 7-\mathrm{Na} 1^{\text {vi }}$	101.13 (12)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 2$	172.34 (13)	$\mathrm{Na} 1-\mathrm{O}-\mathrm{Na} 1^{\text {vi }}$	99.95 (12)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 7{ }^{\text {iv }}$	169.80 (14)	$\mathrm{O} 7-\mathrm{Na} 1-\mathrm{O} 5^{\text {v }}$	90.14 (12)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 7^{\text {iv }}$	90.00 (12)	$\mathrm{O} 7-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {vi }}$	124.83 (13)
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 7{ }^{\text {iv }}$	88.88 (11)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{vi}}$	108.41 (12)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Cu} 2-\mathrm{O} 5$	102.39 (14)	$\mathrm{O} 7-\mathrm{Na} 1-\mathrm{O} 4^{\text {iii }}$	110.09 (12)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 5$	98.36 (13)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 4{ }^{\text {iii }}$	134.38 (13)
$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 5$	89.17 (12)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{O} 4{ }^{\text {iii }}$	93.18 (11)
$\mathrm{O} 7{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{O} 5$	87.73 (12)	$\mathrm{O} 7-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	69.01 (10)
$\mathrm{Se} 2-\mathrm{O} 1-\mathrm{Cu} 2{ }^{\text {iv }}$	121.82 (17)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	158.39 (13)
$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Cu} 2$	120.42 (16)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	80.72 (11)
$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Na} 1^{\text {vi }}$	102.26 (13)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	62.06 (10)
$\mathrm{Cu} 2-\mathrm{O} 2-\mathrm{Na} 1^{\text {vi }}$	130.61 (15)	$\mathrm{O} 7-\mathrm{Na} 1-7^{\text {vi }}$	80.06 (12)
$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Na} 1^{\text {iv }}$	98.62 (14)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Na}-\mathrm{O} 7^{\mathrm{vi}}$	70.66 (11)
$\mathrm{Cu} 2-\mathrm{O} 2-\mathrm{Na} 1^{\text {iv }}$	97.75 (12)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{O} 7{ }^{\text {vi }}$	60.11 (10)
$\mathrm{Na} 1^{\mathrm{vi}}-\mathrm{O} 2-\mathrm{Na} 1^{\text {iv }}$	99.28 (11)	$\mathrm{O} 4{ }^{\text {iiii }}-\mathrm{Na} 1-\mathrm{O} 7^{\text {vi }}$	150.69 (12)
$\mathrm{Se} 2-\mathrm{O} 3-\mathrm{Cu} 2$	124.02 (17)	$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{Na} 1-\mathrm{O} 7^{\text {vi }}$	99.14 (11)
$\mathrm{Se} 1-\mathrm{O} 4-\mathrm{Cu} 1$	116.58 (15)	$\mathrm{O} 7-\mathrm{Na} 1-\mathrm{O}^{\text {vii }}$	102.55 (12)
$\mathrm{Se} 1-\mathrm{O} 4-\mathrm{Na} 1^{\text {iv }}$	98.94 (14)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 6^{\text {vii }}$	73.44 (11)
$\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Na} 1^{\text {iv }}$	104.54 (13)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{O}^{\text {vii }}$	132.30 (12)
$\mathrm{Cu} 2-\mathrm{O} 5-\mathrm{Na} 1^{\text {v }}$	97.49 (13)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 6^{\text {vii }}$	62.63 (11)
$\mathrm{Cu} 2-\mathrm{O} 5-\mathrm{H} 1$	116 (6)	$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{Na} 1-\mathrm{O}^{\mathrm{vii}}$	115.47 (12)
Na1 ${ }^{\text {² }}$-O5-H1	94 (5)	$\mathrm{O} 7^{\mathrm{vi}}-\mathrm{Na} 1-\mathrm{O} 6^{\mathrm{vii}}$	144.02 (11)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x-1, y-1 / 2,-z+1 / 2$; (iii) $x+1, y, z$; (iv) $x-1, y, z$; (v) $-x,-y+1,-z$; (vi) $-x+1,-y+1,-z$; (vii) $-x+1$, $-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{V}}$	$0.80(8)$	$2.00(8)$	$2.786(4)$	$168(7)$
$\mathrm{O} 5 — \mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{viii}}$	$0.87(8)$	$1.88(8)$	$2.746(4)$	$174(7)$
$\mathrm{O} 6-\mathrm{H} 3 \cdots \mathrm{O} 8^{\text {ix }}$	$0.87(8)$	$1.91(8)$	$2.758(5)$	$163(7)$

supplementary materials

$\mathrm{O} 6-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.89 (8)	1.76 (8)	2.641 (4)	169 (8)
Symmetry codes	-z+1/2.	, -z	, y-1/2,	

Fig. 1

Fig. 2

Fig. 3

